Inorder, Preorder, and Postorder Traversal

๐Ÿ’ก Concept Name

Tree Traversals โ€“ Different ways to visit each node in a tree, mainly using depth-first orders: inorder, preorder, and postorder.

๐Ÿ“˜ Quick Intro

Traversing a binary tree means visiting all nodes in a certain sequence. The three common DFS traversal orders are:
Inorder: Left subtree โ†’ Root โ†’ Right subtree
Preorder: Root โ†’ Left subtree โ†’ Right subtree
Postorder: Left subtree โ†’ Right subtree โ†’ Root

๐Ÿง  Analogy / Short Story

Think of cleaning a house: Preorder is greeting the owner first before checking rooms; Inorder is visiting all rooms then talking to the owner; Postorder is cleaning rooms first, and only then saying goodbye to the owner.

๐Ÿ”ง Technical Explanation

  • ๐Ÿ“Œ Inorder: Visit left child, then root, then right child.
  • ๐Ÿ“Œ Preorder: Visit root first, then left and right children.
  • ๐Ÿ“Œ Postorder: Visit left and right children before the root.
  • ๐Ÿ“Š Inorder traversal of a Binary Search Tree (BST) outputs nodes in sorted order.
  • ๐Ÿ” These are recursive depth-first traversal methods.

๐ŸŽฏ Purpose & Use Case

  • โœ… Inorder traversal is useful for retrieving sorted data from BSTs.
  • โœ… Preorder is often used for copying or serializing trees.
  • โœ… Postorder traversal is handy when deleting or freeing nodes.
  • โœ… All are essential for recursive algorithms and expression tree evaluations.

๐Ÿ’ป Real Code Example

public class TreeNode
{
    public int Value;
    public TreeNode? Left, Right;

    public TreeNode(int value) { Value = value; }

    public void Inorder()
    {
        Left?.Inorder();
        Console.Write(Value + " ");
        Right?.Inorder();
    }

    public void Preorder()
    {
        Console.Write(Value + " ");
        Left?.Preorder();
        Right?.Preorder();
    }

    public void Postorder()
    {
        Left?.Postorder();
        Right?.Postorder();
        Console.Write(Value + " ");
    }
}

โ“ Interview Q&A

Q1: What is inorder traversal?
A: Visiting the left subtree, then the node, and finally the right subtree.

Q2: What is preorder traversal?
A: Visiting the node first, then the left subtree, followed by the right subtree.

Q3: What is postorder traversal?
A: Visiting the left subtree, right subtree, and then the node.

Q4: Which traversal is used to get nodes in sorted order in a BST?
A: Inorder traversal.

Q5: When is preorder traversal useful?
A: For copying trees or prefix expression evaluations.

Q6: What is a common use of postorder traversal?
A: For deleting trees or postfix expression evaluations.

Q7: Can these traversals be implemented recursively and iteratively?
A: Yes, both methods are possible.

Q8: What data structure is often used in iterative traversals?
A: A stack.

Q9: How does preorder traversal start?
A: It starts by visiting the root node.

Q10: Which traversal visits the root node last?
A: Postorder traversal.

๐Ÿ“ MCQs

Q1. What is the order of inorder traversal?

  • Node, Left, Right
  • Left, Node, Right
  • Left, Right, Node
  • Right, Left, Node

Q2. What is the order of preorder traversal?

  • Left, Node, Right
  • Node, Left, Right
  • Left, Right, Node
  • Right, Node, Left

Q3. What is the order of postorder traversal?

  • Node, Left, Right
  • Left, Node, Right
  • Left, Right, Node
  • Right, Left, Node

Q4. Which traversal produces sorted nodes in a BST?

  • Preorder
  • Inorder
  • Postorder
  • Level order

Q5. Which traversal visits the root node first?

  • Preorder
  • Inorder
  • Postorder
  • Level order

Q6. Which traversal visits the root node last?

  • Preorder
  • Inorder
  • Postorder
  • Level order

Q7. What data structure is used for iterative traversal?

  • Queue
  • Stack
  • Heap
  • Array

Q8. What is a use case for preorder traversal?

  • Deleting a tree
  • Copying a tree
  • Sorting nodes
  • Searching nodes

Q9. What is a use case for postorder traversal?

  • Copying a tree
  • Deleting a tree
  • Sorting nodes
  • Searching nodes

Q10. Can tree traversals be implemented recursively?

  • No
  • Yes
  • Only inorder
  • Only preorder

๐Ÿ’ก Bonus Insight

Easy way to remember:
Inorder = Sorted order,
Preorder = Copy order,
Postorder = Cleanup order.
You can also implement all three traversals with minor changes in recursive calls or use stacks for iterative solutions.

๐Ÿ“„ PDF Download

Need a handy summary for your notes? Download this topic as a PDF!

๐Ÿ’ฌ Feedback
๐Ÿš€ Start Learning
Share:

Tags: