Business Layer vs Data Layer Caching

๐Ÿ’ก Concept Name

Business Layer Caching and Data Layer Caching both improve application speed, but focus on different parts of the software stack.

๐Ÿ“˜ Quick Intro

Business layer caching stores results from business logic, such as computed data or service responses, while data layer caching saves raw data retrieved from databases. Choosing which layer to cache depends on data freshness, complexity, and reuse.

๐Ÿ’ป Real Code Analogy

Business Layer: Cache the product price after applying discounts and taxes.
Data Layer: Cache raw product details fetched directly from the database.

๐Ÿ“Š Comparison Table 1

AspectBusiness Layer CachingData Layer Caching
ScopeApplication logic outputsRaw database/query results
Use CaseComplex processed dataFrequently accessed raw data
GranularityHigher-level business objectsTables, rows, or queries
ImplementationIMemoryCache, Redis in servicesEF Core cache, Redis, SQL cache
InvalidationRule-based or manual triggersTTL, eviction policies, or DB triggers
DrawbackMay hold stale business logic resultsMay cache outdated DB state

๐Ÿ” Comparison Table 2

AspectBusiness LayerData Layer
Cached DataBusiness logic outputRaw query results/entities
GranularityCoarseFine
FlexibilityLogic specificMore generic/reusable
TimingAfter business processingRight after DB fetch
Common ToolsIMemoryCache, RedisEF Core caching, Dapper cache
InvalidationLogic-based rulesTTL, DB triggers

๐Ÿ’ป Real Code Example


// Business Layer Caching example
public class ProductService
{
    private readonly IMemoryCache _cache;
    private readonly IProductRepository _repo;

    public ProductService(IMemoryCache cache, IProductRepository repo)
    {
        _cache = cache;
        _repo = repo;
    }

    public ProductDto GetFeaturedProduct()
    {
        return _cache.GetOrCreate("FeaturedProduct", entry =>
        {
            entry.AbsoluteExpirationRelativeToNow = TimeSpan.FromMinutes(5);
            return _repo.GetFeaturedProductFromDb();
        });
    }
}
            

โ“ Interview Q&A

Q1: What is business layer caching?
A: Caching results of business logic or service methods to avoid repeating expensive computations.

Q2: What is data layer caching?
A: Caching raw data or query results close to the database to speed up retrieval.

Q3: Which caching layer is more tightly coupled to the database?
A: Data layer caching.

Q4: When should you prefer business layer caching?
A: When results are computation-heavy and reused in multiple places.

Q5: Can both layers share the same Redis cache?
A: Yes, Redis can be used by both caching layers.

๐Ÿ“ MCQs

Q1. Which layer caches business logic outputs?

  • Data layer
  • Database
  • Business layer
  • Frontend

Q2. Which layer is closest to the database?

  • Service layer
  • Data layer
  • Client
  • Controller

Q3. What is a downside of data layer caching?

  • Slow logic
  • Stale DB state
  • UI lag
  • Disk overload

Q4. Which .NET interface supports memory caching?

  • IData
  • IMemoryCache
  • ICacheHandler
  • RedisCache

Q5. What cache policy controls expiration?

  • CRUD
  • TTL
  • JSON
  • REST

Q6. What type of data should business layer cache?

  • Table metadata
  • Expensive computations
  • Static assets
  • JS bundles

Q7. Which caching can cache EF Core queries?

  • Business layer
  • Data layer
  • Middleware
  • ViewModel

Q8. Which layer handles domain rules in caching?

  • DB triggers
  • Business layer
  • App Pool
  • Web.config

Q9. Which pattern might be used with business layer caching?

  • Client side
  • Data layer
  • Business layer
  • Redis server

Q10. Can Redis be shared between caching layers?

  • No
  • Yes
  • Only in cloud
  • Only for SQL

๐Ÿ’ก Bonus Insight

For best performance, combine caching layers: use data layer caching to speed up database calls and business layer caching to store processed results ready for presentation.

๐Ÿ“„ PDF Download

Need a handy summary for your notes? Download this topic as a PDF!

๐Ÿ’ฌ Feedback
๐Ÿš€ Start Learning
Share:

Tags: